Photoemission from diamond films and substrates into water: dynamics of solvated electrons and implications for diamond photoelectrochemistry.
نویسندگان
چکیده
Illumination of diamond with above-bandgap light results in emission of electrons into water and formation of solvated electrons. Here we characterize the materials factors that affect that dynamics of the solvated electrons produced by illumination of niobium substrates and of diamond thin films grown on niobium substrates using transient absorption spectroscopy, and we relate the solvated electron dynamics to the ability to reduce N2 to NH3. For diamond films grown on niobium substrates for different lengths of time, the initial yield of electrons is similar for the different samples, but the lifetime of the solvated electrons increases approximately 10-fold as the film grows. The time-averaged solvated electron concentration and the yield of NH3 produced from N2 both show maxima for films grown for 1-2 hours, with thicknesses of 100-200 nm. Measurements at different values of pH on boron-doped diamond films show that the instantaneous electron emission is nearly independent of pH, but the solvated electron lifetime becomes longer as the pH is increased from pH = 2 to pH = 5. Finally, we also illustrate an important caveat arising from the fact that charge neutrality requires that light-induced emission of electrons from diamond must be accompanied by corresponding oxidation reactions. In situations where the valence band holes cannot readily induce solution-phase oxidation reactions, the diamond itself can be etched by reacting with water to produce CO. Implications for other reactions such as photocatalytic CO2 reduction are discussed, along with strategies for mitigating the potential photo-etching phenomena.
منابع مشابه
Laser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کاملUV photoemission efficiency of polycrystalline CVD diamond films
The absolute quantum efficiency of polycrystalline diamond films grown on silicon substrates by chemical vapor deposition (CVD) is reported in the range of 25–200 nm. The efficiency of boron-doped and hydrogen-activated by microwave plasma reflective photocathodes peaked at 37% at 40 nm with the sensitivity cutoff observed at ~190 nm. We confirmed that hydrogen activation is relatively stable i...
متن کاملMorphological Characterization of Combustion Deposited Diamond Crystals and Films
Single crystals and polycrystalline diamond films of several thicknesses were deposited using oxygen/acetylene combustion flame technique. The substrate used was pure polycrystalline molybdenum subjected to mechanical polishing. Quality and microstructural characteristic of diamond produced were investigated using X-Ray diffraction, Raman Spectroscopy, Scanning and Transmission Electron Microsc...
متن کاملModeling of the electron field emission process in polycrystalline diamond and diamond-like carbon thin films
Electron field emission has been observed from carbon thin films at relatively low electric fields. These films range from amorphous carbon to polycrystalline diamond films. There are many models that attempt to account for the electron field emission process observed in these films. The initial models that were based on the emission due purely to a negative electron affinity have now been modi...
متن کاملAn Investigation on Two Types of Crystalline Micro-diamond Film Coated Tools Lapping with Sapphire Wafer
Two types of micron-diamond films were prepared on YG6 substrate by hot filament chemical vapor deposition(HFCVD) method. Morphology and orientation of crystalline growth were evaluated by SEM and XRD. Diamond film coated tools and sapphire wafer’ surface before and after lapping experiment were contrasted. The results indicated that a significant change in Raman spectrum of two types of micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Faraday discussions
دوره 172 شماره
صفحات -
تاریخ انتشار 2014